Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Addict Biol ; 27(1): e13100, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34636470

RESUMEN

Harmful alcohol use is a leading cause of premature death and is associated with age-related disease. Biological ageing is highly variable between individuals and may deviate from chronological ageing, suggesting that biomarkers of biological ageing (derived from DNA methylation or brain structural measures) may be clinically relevant. Here, we investigated the relationships between alcohol phenotypes and both brain and DNA methylation age estimates. First, using data from UK Biobank and Generation Scotland, we tested the association between alcohol consumption (units/week) or hazardous use (Alcohol Use Disorders Identification Test [AUDIT] scores) and accelerated brain and epigenetic ageing in 20,258 and 8051 individuals, respectively. Second, we used Mendelian randomisation (MR) to test for a causal effect of alcohol consumption levels and alcohol use disorder (AUD) on biological ageing. Alcohol use showed a consistent positive association with higher predicted brain age (AUDIT-C: ß = 0.053, p = 3.16 × 10-13 ; AUDIT-P: ß = 0.052, p = 1.6 × 10-13 ; total AUDIT score: ß = 0.062, p = 5.52 × 10-16 ; units/week: ß = 0.078, p = 2.20 × 10-16 ), and two DNA methylation-based estimates of ageing, GrimAge (units/week: ß = 0.053, p = 1.48 × 10-7 ) and PhenoAge (units/week: ß = 0.077, p = 2.18x10-10 ). MR analyses revealed limited evidence for a causal effect of AUD on accelerated brain ageing (ß = 0.118, p = 0.044). However, this result should be interpreted cautiously as the significant effect was driven by a single genetic variant. We found no evidence for a causal effect of alcohol consumption levels on accelerated biological ageing. Future studies investigating the mechanisms associating alcohol use with accelerated biological ageing are warranted.


Asunto(s)
Envejecimiento/efectos de los fármacos , Alcoholismo/fisiopatología , Encéfalo/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Factores de Edad , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Análisis de la Aleatorización Mendeliana , Fenotipo , Factores Sexuales , Reino Unido
2.
Am J Psychiatry ; 179(1): 58-70, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33985350

RESUMEN

OBJECTIVE: Genome-wide association studies (GWASs) of the Alcohol Use Disorders Identification Test (AUDIT), a 10-item screen for alcohol use disorder (AUD), have elucidated novel loci for alcohol consumption and misuse. However, these studies also revealed that GWASs can be influenced by numerous biases (e.g., measurement error, selection bias), which may have led to inconsistent genetic correlations between alcohol involvement and AUD, as well as paradoxically negative genetic correlations between alcohol involvement and psychiatric disorders and/or medical conditions. The authors used genomic structural equation modeling to elucidate the genetics of alcohol consumption and problematic consequences of alcohol use as measured by AUDIT. METHODS: To explore these unexpected differences in genetic correlations, the authors conducted the first item-level and the largest GWAS of AUDIT items (N=160,824) and applied a multivariate framework to mitigate previous biases. RESULTS: The authors identified novel patterns of similarity (and dissimilarity) among the AUDIT items and found evidence of a correlated two-factor structure at the genetic level ("consumption" and "problems," rg=0.80). Moreover, by applying empirically derived weights to each of the AUDIT items, the authors constructed an aggregate measure of alcohol consumption that was strongly associated with alcohol dependence (rg=0.67), moderately associated with several other psychiatric disorders, and no longer positively associated with health and positive socioeconomic outcomes. Lastly, by conducting polygenic analyses in three independent cohorts that differed in their ascertainment and prevalence of AUD, the authors identified novel genetic associations between alcohol consumption, alcohol misuse, and health. CONCLUSIONS: This work further emphasizes the value of AUDIT for both clinical and genetic studies of AUD and the importance of using multivariate methods to study genetic associations that are more closely related to AUD.


Asunto(s)
Alcoholismo , Estudio de Asociación del Genoma Completo , Consumo de Bebidas Alcohólicas/epidemiología , Alcoholismo/epidemiología , Alcoholismo/genética , Humanos
3.
Mol Psychiatry ; 27(3): 1754-1764, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34857913

RESUMEN

Alcohol misuse is common in many societies worldwide and is associated with extensive morbidity and mortality, often leading to alcohol use disorders (AUD) and alcohol-related end-organ damage. The underlying mechanisms contributing to the development of AUD are largely unknown; however, growing evidence suggests that alcohol consumption is strongly associated with alterations in DNA methylation. Identification of alcohol-associated methylomic variation might provide novel insights into pathophysiology and novel treatment targets for AUD. Here we performed the largest single-cohort epigenome-wide association study (EWAS) of alcohol consumption to date (N = 8161) and cross-validated findings in AUD populations with relevant endophenotypes, as well as alcohol-related animal models. Results showed 2504 CpGs significantly associated with alcohol consumption (Bonferroni p value < 6.8 × 10-8) with the five leading probes located in SLC7A11 (p = 7.75 × 10-108), JDP2 (p = 1.44 × 10-56), GAS5 (p = 2.71 × 10-47), TRA2B (p = 3.54 × 10-42), and SLC43A1 (p = 1.18 × 10-40). Genes annotated to associated CpG sites are implicated in liver and brain function, the cellular response to alcohol and alcohol-associated diseases, including hypertension and Alzheimer's disease. Two-sample Mendelian randomization confirmed the causal relationship of consumption on AUD risk (inverse variance weighted (IVW) p = 5.37 × 10-09). A methylation-based predictor of alcohol consumption was able to discriminate AUD cases in two independent cohorts (p = 6.32 × 10-38 and p = 5.41 × 10-14). The top EWAS probe cg06690548, located in the cystine/glutamate transporter SLC7A11, was replicated in an independent cohort of AUD and control participants (N = 615) and showed strong hypomethylation in AUD (p < 10-17). Decreased CpG methylation at this probe was consistently associated with clinical measures including increased heavy drinking days (p < 10-4), increased liver function enzymes (GGT (p = 1.03 × 10-21), ALT (p = 1.29 × 10-6), and AST (p = 1.97 × 10-8)) in individuals with AUD. Postmortem brain analyses documented increased SLC7A11 expression in the frontal cortex of individuals with AUD and animal models showed marked increased expression in liver, suggesting a mechanism by which alcohol leads to hypomethylation-induced overexpression of SLC7A11. Taken together, our EWAS discovery sample and subsequent validation of the top probe in AUD suggest a strong role of abnormal glutamate signaling mediated by methylomic variation in SLC7A11. Our data are intriguing given the prominent role of glutamate signaling in brain and liver and might provide an important target for therapeutic intervention.


Asunto(s)
Alcoholismo , Sistema de Transporte de Aminoácidos y+ , Epigenoma , Consumo de Bebidas Alcohólicas/genética , Alcoholismo/genética , Sistema de Transporte de Aminoácidos X-AG , Sistema de Transporte de Aminoácidos y+/genética , Sistema de Transporte de Aminoácidos y+/metabolismo , Cistina/genética , Metilación de ADN/genética , Estudio de Asociación del Genoma Completo/métodos , Glutamatos/genética , Humanos
4.
Nat Genet ; 53(9): 1311-1321, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34493871

RESUMEN

Characterizing genetic influences on DNA methylation (DNAm) provides an opportunity to understand mechanisms underpinning gene regulation and disease. In the present study, we describe results of DNAm quantitative trait locus (mQTL) analyses on 32,851 participants, identifying genetic variants associated with DNAm at 420,509 DNAm sites in blood. We present a database of >270,000 independent mQTLs, of which 8.5% comprise long-range (trans) associations. Identified mQTL associations explain 15-17% of the additive genetic variance of DNAm. We show that the genetic architecture of DNAm levels is highly polygenic. Using shared genetic control between distal DNAm sites, we constructed networks, identifying 405 discrete genomic communities enriched for genomic annotations and complex traits. Shared genetic variants are associated with both DNAm levels and complex diseases, but only in a minority of cases do these associations reflect causal relationships from DNAm to trait or vice versa, indicating a more complex genotype-phenotype map than previously anticipated.


Asunto(s)
Metilación de ADN/genética , ADN/metabolismo , Regulación de la Expresión Génica/genética , Predisposición Genética a la Enfermedad/genética , Sitios de Carácter Cuantitativo/genética , Mapeo Cromosómico , Epigénesis Genética/genética , Estudio de Asociación del Genoma Completo , Humanos , Herencia Multifactorial/genética , Polimorfismo de Nucleótido Simple/genética , Carácter Cuantitativo Heredable , Transcriptoma/genética
6.
Mol Psychiatry ; 26(8): 4344-4354, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-31767999

RESUMEN

Alcohol use and smoking are leading causes of death and disability worldwide. Both genetic and environmental factors have been shown to influence individual differences in the use of these substances. In the present study we tested whether genetic factors, modelled alongside common family environment, explained phenotypic variance in alcohol use and smoking behaviour in the Generation Scotland (GS) family sample of up to 19,377 individuals. SNP and pedigree-associated effects combined explained between 18 and 41% of the variance in substance use. Shared couple effects explained a significant amount of variance across all substance use traits, particularly alcohol intake, for which 38% of the phenotypic variance was explained. We tested whether the within-couple substance use associations were due to assortative mating by testing the association between partner polygenic risk scores in 34,987 couple pairs from the UK Biobank (UKB). No significant association between partner polygenic risk scores were observed. Associations between an individual's alcohol PRS (b = 0.05, S.E. = 0.006, p < 2 × 10-16) and smoking status PRS (b = 0.05, S.E. = 0.005, p < 2 × 10-16) were found with their partner's phenotype. In support of this, G carriers of a functional ADH1B polymorphism (rs1229984), known to be associated with greater alcohol intake, were found to consume less alcohol if they had a partner who carried an A allele at this SNP. Together these results show that the shared couple environment contributes significantly to patterns of substance use. It is unclear whether this is due to shared environmental factors, assortative mating, or indirect genetic effects. Future studies would benefit from longitudinal data and larger sample sizes to assess this further.


Asunto(s)
Consumo de Bebidas Alcohólicas , Fumar , Alcohol Deshidrogenasa/genética , Consumo de Bebidas Alcohólicas/genética , Familia , Humanos , Linaje , Escocia , Fumar/genética , Fumar Tabaco
7.
Psychol Med ; 51(7): 1147-1156, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-31955720

RESUMEN

BACKGROUND: Studies suggest that alcohol consumption and alcohol use disorders have distinct genetic backgrounds. METHODS: We examined whether polygenic risk scores (PRS) for consumption and problem subscales of the Alcohol Use Disorders Identification Test (AUDIT-C, AUDIT-P) in the UK Biobank (UKB; N = 121 630) correlate with alcohol outcomes in four independent samples: an ascertained cohort, the Collaborative Study on the Genetics of Alcoholism (COGA; N = 6850), and population-based cohorts: Avon Longitudinal Study of Parents and Children (ALSPAC; N = 5911), Generation Scotland (GS; N = 17 461), and an independent subset of UKB (N = 245 947). Regression models and survival analyses tested whether the PRS were associated with the alcohol-related outcomes. RESULTS: In COGA, AUDIT-P PRS was associated with alcohol dependence, AUD symptom count, maximum drinks (R2 = 0.47-0.68%, p = 2.0 × 10-8-1.0 × 10-10), and increased likelihood of onset of alcohol dependence (hazard ratio = 1.15, p = 4.7 × 10-8); AUDIT-C PRS was not an independent predictor of any phenotype. In ALSPAC, the AUDIT-C PRS was associated with alcohol dependence (R2 = 0.96%, p = 4.8 × 10-6). In GS, AUDIT-C PRS was a better predictor of weekly alcohol use (R2 = 0.27%, p = 5.5 × 10-11), while AUDIT-P PRS was more associated with problem drinking (R2 = 0.40%, p = 9.0 × 10-7). Lastly, AUDIT-P PRS was associated with ICD-based alcohol-related disorders in the UKB subset (R2 = 0.18%, p < 2.0 × 10-16). CONCLUSIONS: AUDIT-P PRS was associated with a range of alcohol-related phenotypes across population-based and ascertained cohorts, while AUDIT-C PRS showed less utility in the ascertained cohort. We show that AUDIT-P is genetically correlated with both use and misuse and demonstrate the influence of ascertainment schemes on PRS analyses.


Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Alcoholismo/genética , Estudios de Cohortes , Estudio de Asociación del Genoma Completo , Humanos , Estudios Longitudinales , Fenotipo , Escocia
8.
Mol Psychiatry ; 26(4): 1119-1132, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-31649322

RESUMEN

Observational studies suggest that lower educational attainment (EA) may be associated with risky alcohol use behaviors; however, these findings may be biased by confounding and reverse causality. We performed two-sample Mendelian randomization (MR) using summary statistics from recent genome-wide association studies (GWAS) with >780,000 participants to assess the causal effects of EA on alcohol use behaviors and alcohol dependence (AD). Fifty-three independent genome-wide significant SNPs previously associated with EA were tested for association with alcohol use behaviors. We show that while genetic instruments associated with increased EA are not associated with total amount of weekly drinks, they are associated with reduced frequency of binge drinking ≥6 drinks (ßIVW = -0.198, 95% CI, -0.297 to -0.099, PIVW = 9.14 × 10-5), reduced total drinks consumed per drinking day (ßIVW = -0.207, 95% CI, -0.293 to -0.120, PIVW = 2.87 × 10-6), as well as lower weekly distilled spirits intake (ßIVW = -0.148, 95% CI, -0.188 to -0.107, PIVW = 6.24 × 10-13). Conversely, genetic instruments for increased EA were associated with increased alcohol intake frequency (ßIVW = 0.331, 95% CI, 0.267-0.396, PIVW = 4.62 × 10-24), and increased weekly white wine (ßIVW = 0.199, 95% CI, 0.159-0.238, PIVW = 7.96 × 10-23) and red wine intake (ßIVW = 0.204, 95% CI, 0.161-0.248, PIVW = 6.67 × 10-20). Genetic instruments associated with increased EA reduced AD risk: an additional 3.61 years schooling reduced the risk by ~50% (ORIVW = 0.508, 95% CI, 0.315-0.819, PIVW = 5.52 × 10-3). Consistency of results across complementary MR methods accommodating different assumptions about genetic pleiotropy strengthened causal inference. Our findings suggest EA may have important effects on alcohol consumption patterns and may provide potential mechanisms explaining reported associations between EA and adverse health outcomes.


Asunto(s)
Alcoholismo , Estudio de Asociación del Genoma Completo , Consumo de Bebidas Alcohólicas/genética , Alcoholismo/genética , Escolaridad , Humanos , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple/genética
9.
Mol Psychiatry ; 26(6): 2263-2276, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32203157

RESUMEN

Excessive alcohol intake is associated with 5.9% of global deaths. However, this figure is especially acute in men such that 7.6% of deaths can be attributed to alcohol intake. Previous studies identified a significant interaction between genotypes of the galanin (GAL) gene with anxiety and alcohol abuse in different male populations but were unable to define a mechanism. To address these issues the current study analysed the human UK Biobank cohort and identified a significant interaction (n = 115,865; p = 0.0007) between allelic variation (GG or CA genotypes) in the highly conserved human GAL5.1 enhancer, alcohol intake (AUDIT questionnaire scores) and anxiety in men. Critically, disruption of GAL5.1 in mice using CRISPR genome editing significantly reduced GAL expression in the amygdala and hypothalamus whilst producing a corresponding reduction in ethanol intake in KO mice. Intriguingly, we also found the evidence of reduced anxiety-like behaviour in male GAL5.1KO animals mirroring that seen in humans from our UK Biobank studies. Using bioinformatic analysis and co-transfection studies we further identified the EGR1 transcription factor, that is co-expressed with GAL in amygdala and hypothalamus, as being important in the protein kinase C (PKC) supported activity of the GG genotype of GAL5.1 but less so in the CA genotype. Our unique study uses a novel combination of human association analysis, CRISPR genome editing in mice, animal behavioural analysis and cell culture studies to identify a highly conserved regulatory mechanism linking anxiety and alcohol intake that might contribute to increased susceptibility to anxiety and alcohol abuse in men.


Asunto(s)
Bancos de Muestras Biológicas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Consumo de Bebidas Alcohólicas/genética , Animales , Ansiedad/genética , Etanol , Masculino , Ratones , Reino Unido
10.
Mol Psychiatry ; 26(6): 2224-2237, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32398718

RESUMEN

Alcohol use disorder (AUD) is a chronic debilitating disorder with limited treatment options and poorly defined pathophysiology. There are substantial genetic and epigenetic components; however, the underlying mechanisms contributing to AUD remain largely unknown. We conducted the largest DNA methylation epigenome-wide association study (EWAS) analyses currently available for AUD (total N = 625) and employed a top hit replication (N = 4798) using a cross-tissue/cross-phenotypic approach with the goal of identifying novel epigenetic targets relevant to AUD. Results show that a network of differentially methylated regions in glucocorticoid signaling and inflammation-related genes were associated with alcohol use behaviors. A top probe consistently associated across all cohorts was located in the long non-coding RNA growth arrest specific five gene (GAS5) (p < 10-24). GAS5 has been implicated in regulating transcriptional activity of the glucocorticoid receptor and has multiple functions related to apoptosis, immune function and various cancers. Endophenotypic analyses using peripheral cortisol levels and neuroimaging paradigms showed that methylomic variation in GAS5 network-related probes were associated with stress phenotypes. Postmortem brain analyses documented increased GAS5 expression in the amygdala of individuals with AUD. Our data suggest that alcohol use is associated with differential methylation in the glucocorticoid system that might influence stress and inflammatory reactivity and subsequently risk for AUD.


Asunto(s)
Alcoholismo , Glucocorticoides , Consumo de Bebidas Alcohólicas/genética , Alcoholismo/genética , Metilación de ADN/genética , Epigénesis Genética/genética , Epigenoma , Estudio de Asociación del Genoma Completo , Humanos , Transducción de Señal/genética
11.
Mol Psychiatry ; 26(9): 5112-5123, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32523041

RESUMEN

Variation in DNA methylation (DNAm) is associated with lifestyle factors such as smoking and body mass index (BMI) but there has been little research exploring its ability to identify individuals with major depressive disorder (MDD). Using penalised regression on genome-wide CpG methylation, we tested whether DNAm risk scores (MRS), trained on 1223 MDD cases and 1824 controls, could discriminate between cases (n = 363) and controls (n = 1417) in an independent sample, comparing their predictive accuracy to polygenic risk scores (PRS). The MRS explained 1.75% of the variance in MDD (ß = 0.338, p = 1.17 × 10-7) and remained associated after adjustment for lifestyle factors (ß = 0.219, p = 0.001, R2 = 0.68%). When modelled alongside PRS (ß = 0.384, p = 4.69 × 10-9) the MRS remained associated with MDD (ß = 0.327, p = 5.66 × 10-7). The MRS was also associated with incident cases of MDD who were well at recruitment but went on to develop MDD at a later assessment (ß = 0.193, p = 0.016, R2 = 0.52%). Heritability analyses found additive genetic effects explained 22% of variance in the MRS, with a further 19% explained by pedigree-associated genetic effects and 16% by the shared couple environment. Smoking status was also strongly associated with MRS (ß = 0.440, p ≤ 2 × 10-16). After removing smokers from the training set, the MRS strongly associated with BMI (ß = 0.053, p = 0.021). We tested the association of MRS with 61 behavioural phenotypes and found that whilst PRS were associated with psychosocial and mental health phenotypes, MRS were more strongly associated with lifestyle and sociodemographic factors. DNAm-based risk scores of MDD significantly discriminated MDD cases from controls in an independent dataset and may represent an archive of exposures to lifestyle factors that are relevant to the prediction of MDD.


Asunto(s)
Trastorno Depresivo Mayor , Trastorno Depresivo Mayor/genética , Epigénesis Genética/genética , Epigenómica , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Humanos , Herencia Multifactorial/genética , Factores Sociodemográficos
12.
PLoS Med ; 17(12): e1003410, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33275596

RESUMEN

BACKGROUND: Alcohol consumption and smoking, 2 major risk factors for cardiovascular disease (CVD), often occur together. The objective of this study is to use a wide range of CVD risk factors and outcomes to evaluate potential total and direct causal roles of alcohol and tobacco use on CVD risk factors and events. METHODS AND FINDINGS: Using large publicly available genome-wide association studies (GWASs) (results from more than 1.2 million combined study participants) of predominantly European ancestry, we conducted 2-sample single-variable Mendelian randomization (SVMR) and multivariable Mendelian randomization (MVMR) to simultaneously assess the independent impact of alcohol consumption and smoking on a wide range of CVD risk factors and outcomes. Multiple sensitivity analyses, including complementary Mendelian randomization (MR) methods, and secondary alcohol consumption and smoking datasets were used. SVMR showed genetic predisposition for alcohol consumption to be associated with CVD risk factors, including high-density lipoprotein cholesterol (HDL-C) (beta 0.40, 95% confidence interval (CI), 0.04-0.47, P value = 1.72 × 10-28), triglycerides (TRG) (beta -0.23, 95% CI, -0.30, -0.15, P value = 4.69 × 10-10), automated systolic blood pressure (BP) measurement (beta 0.11, 95% CI, 0.03-0.18, P value = 4.72 × 10-3), and automated diastolic BP measurement (beta 0.09, 95% CI, 0.03-0.16, P value = 5.24 × 10-3). Conversely, genetically predicted smoking was associated with increased TRG (beta 0.097, 95% CI, 0.014-0.027, P value = 6.59 × 10-12). Alcohol consumption was also associated with increased myocardial infarction (MI) and coronary heart disease (CHD) risks (MI odds ratio (OR) = 1.24, 95% CI, 1.03-1.50, P value = 0.02; CHD OR = 1.21, 95% CI, 1.01-1.45, P value = 0.04); however, its impact was attenuated in MVMR adjusting for smoking. Conversely, alcohol maintained an association with coronary atherosclerosis (OR 1.02, 95% CI, 1.01-1.03, P value = 5.56 × 10-4). In comparison, after adjusting for alcohol consumption, smoking retained its association with several CVD outcomes including MI (OR = 1.84, 95% CI, 1.43, 2.37, P value = 2.0 × 10-6), CHD (OR = 1.64, 95% CI, 1.28-2.09, P value = 8.07 × 10-5), heart failure (HF) (OR = 1.61, 95% CI, 1.32-1.95, P value = 1.9 × 10-6), and large artery atherosclerosis (OR = 2.4, 95% CI, 1.41-4.07, P value = 0.003). Notably, using the FinnGen cohort data, we were able to replicate the association between smoking and several CVD outcomes including MI (OR = 1.77, 95% CI, 1.10-2.84, P value = 0.02), HF (OR = 1.67, 95% CI, 1.14-2.46, P value = 0.008), and peripheral artery disease (PAD) (OR = 2.35, 95% CI, 1.38-4.01, P value = 0.002). The main limitations of this study include possible bias from unmeasured confounders, inability of summary-level MR to investigate a potentially nonlinear relationship between alcohol consumption and CVD risk, and the generalizability of the UK Biobank (UKB) to other populations. CONCLUSIONS: Evaluating the widest range of CVD risk factors and outcomes of any alcohol consumption or smoking MR study to date, we failed to find a cardioprotective impact of genetically predicted alcohol consumption on CVD outcomes. However, alcohol was associated with and increased HDL-C, decreased TRG, and increased BP, which may indicate pathways through impact CVD risk, warranting further study. We found smoking to be a risk factor for many CVDs even after adjusting for alcohol. While future studies incorporating alcohol consumption patterns are necessary, our data suggest causal inference between alcohol, smoking, and CVD risk, further supporting that lifestyle modifications might be able to reduce overall CVD risk.


Asunto(s)
Consumo de Bebidas Alcohólicas/efectos adversos , Enfermedades Cardiovasculares/epidemiología , Polimorfismo de Nucleótido Simple , Uso de Tabaco/efectos adversos , Consumo de Bebidas Alcohólicas/epidemiología , Consumo de Bebidas Alcohólicas/genética , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Análisis de la Aleatorización Mendeliana , Análisis Multivariante , Medición de Riesgo , Uso de Tabaco/epidemiología , Uso de Tabaco/genética
13.
Lancet Psychiatry ; 7(12): 1032-1045, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33096046

RESUMEN

BACKGROUND: Variation in liability to cannabis use disorder has a strong genetic component (estimated twin and family heritability about 50-70%) and is associated with negative outcomes, including increased risk of psychopathology. The aim of the study was to conduct a large genome-wide association study (GWAS) to identify novel genetic variants associated with cannabis use disorder. METHODS: To conduct this GWAS meta-analysis of cannabis use disorder and identify associations with genetic loci, we used samples from the Psychiatric Genomics Consortium Substance Use Disorders working group, iPSYCH, and deCODE (20 916 case samples, 363 116 control samples in total), contrasting cannabis use disorder cases with controls. To examine the genetic overlap between cannabis use disorder and 22 traits of interest (chosen because of previously published phenotypic correlations [eg, psychiatric disorders] or hypothesised associations [eg, chronotype] with cannabis use disorder), we used linkage disequilibrium score regression to calculate genetic correlations. FINDINGS: We identified two genome-wide significant loci: a novel chromosome 7 locus (FOXP2, lead single-nucleotide polymorphism [SNP] rs7783012; odds ratio [OR] 1·11, 95% CI 1·07-1·15, p=1·84 × 10-9) and the previously identified chromosome 8 locus (near CHRNA2 and EPHX2, lead SNP rs4732724; OR 0·89, 95% CI 0·86-0·93, p=6·46 × 10-9). Cannabis use disorder and cannabis use were genetically correlated (rg 0·50, p=1·50 × 10-21), but they showed significantly different genetic correlations with 12 of the 22 traits we tested, suggesting at least partially different genetic underpinnings of cannabis use and cannabis use disorder. Cannabis use disorder was positively genetically correlated with other psychopathology, including ADHD, major depression, and schizophrenia. INTERPRETATION: These findings support the theory that cannabis use disorder has shared genetic liability with other psychopathology, and there is a distinction between genetic liability to cannabis use and cannabis use disorder. FUNDING: National Institute of Mental Health; National Institute on Alcohol Abuse and Alcoholism; National Institute on Drug Abuse; Center for Genomics and Personalized Medicine and the Centre for Integrative Sequencing; The European Commission, Horizon 2020; National Institute of Child Health and Human Development; Health Research Council of New Zealand; National Institute on Aging; Wellcome Trust Case Control Consortium; UK Research and Innovation Medical Research Council (UKRI MRC); The Brain & Behavior Research Foundation; National Institute on Deafness and Other Communication Disorders; Substance Abuse and Mental Health Services Administration (SAMHSA); National Institute of Biomedical Imaging and Bioengineering; National Health and Medical Research Council (NHMRC) Australia; Tobacco-Related Disease Research Program of the University of California; Families for Borderline Personality Disorder Research (Beth and Rob Elliott) 2018 NARSAD Young Investigator Grant; The National Child Health Research Foundation (Cure Kids); The Canterbury Medical Research Foundation; The New Zealand Lottery Grants Board; The University of Otago; The Carney Centre for Pharmacogenomics; The James Hume Bequest Fund; National Institutes of Health: Genes, Environment and Health Initiative; National Institutes of Health; National Cancer Institute; The William T Grant Foundation; Australian Research Council; The Virginia Tobacco Settlement Foundation; The VISN 1 and VISN 4 Mental Illness Research, Education, and Clinical Centers of the US Department of Veterans Affairs; The 5th Framework Programme (FP-5) GenomEUtwin Project; The Lundbeck Foundation; NIH-funded Shared Instrumentation Grant S10RR025141; Clinical Translational Sciences Award grants; National Institute of Neurological Disorders and Stroke; National Heart, Lung, and Blood Institute; National Institute of General Medical Sciences.


Asunto(s)
Estudio de Asociación del Genoma Completo , Abuso de Marihuana/genética , Humanos , Polimorfismo de Nucleótido Simple , Riesgo
14.
Alzheimers Dement (Amst) ; 12(1): e12078, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32789163

RESUMEN

INTRODUCTION: Dementia pathogenesis begins years before clinical symptom onset, necessitating the understanding of premorbid risk mechanisms. Here we investigated potential pathogenic mechanisms by assessing DNA methylation associations with dementia risk factors in Alzheimer's disease (AD)-free participants. METHODS: Associations between dementia risk measures (family history, AD genetic risk score [GRS], and dementia risk scores [combining lifestyle, demographic, and genetic factors]) and whole-blood DNA methylation were assessed in discovery and replication samples (n = ~400 to ~5000) from Generation Scotland. RESULTS: AD genetic risk and two dementia risk scores were associated with differential methylation. The GRS associated predominantly with methylation differences in cis but also identified a genomic region implicated in Parkinson disease. Loci associated with dementia risk scores were enriched for those previously associated with body mass index and alcohol consumption. DISCUSSION: Dementia risk measures show widespread association with blood-based methylation, generating several hypotheses for assessment by future studies.

15.
Nat Commun ; 11(1): 2301, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32385265

RESUMEN

Depression is a leading cause of worldwide disability but there remains considerable uncertainty regarding its neural and behavioural associations. Here, using non-overlapping Psychiatric Genomics Consortium (PGC) datasets as a reference, we estimate polygenic risk scores for depression (depression-PRS) in a discovery (N = 10,674) and replication (N = 11,214) imaging sample from UK Biobank. We report 77 traits that are significantly associated with depression-PRS, in both discovery and replication analyses. Mendelian Randomisation analysis supports a potential causal effect of liability to depression on brain white matter microstructure (ß: 0.125 to 0.868, pFDR < 0.043). Several behavioural traits are also associated with depression-PRS (ß: 0.014 to 0.180, pFDR: 0.049 to 1.28 × 10-14) and we find a significant and positive interaction between depression-PRS and adverse environmental exposures on mental health outcomes. This study reveals replicable associations between depression-PRS and white matter microstructure. Our results indicate that white matter microstructure differences may be a causal consequence of liability to depression.


Asunto(s)
Depresión/genética , Corteza Prefrontal/metabolismo , Anciano , Bancos de Muestras Biológicas , Depresión/metabolismo , Depresión/patología , Femenino , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Análisis de la Aleatorización Mendeliana , Persona de Mediana Edad , Neuroimagen/métodos , Polimorfismo de Nucleótido Simple/genética , Corteza Prefrontal/patología , Factores de Riesgo
16.
Nat Neurosci ; 23(7): 809-818, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32451486

RESUMEN

Problematic alcohol use (PAU) is a leading cause of death and disability worldwide. Although genome-wide association studies have identified PAU risk genes, the genetic architecture of this trait is not fully understood. We conducted a proxy-phenotype meta-analysis of PAU, combining alcohol use disorder and problematic drinking, in 435,563 European-ancestry individuals. We identified 29 independent risk variants, 19 of them novel. PAU was genetically correlated with 138 phenotypes, including substance use and psychiatric traits. Phenome-wide polygenic risk score analysis in an independent biobank sample (BioVU, n = 67,589) confirmed the genetic correlations between PAU and substance use and psychiatric disorders. Genetic heritability of PAU was enriched in brain and in conserved and regulatory genomic regions. Mendelian randomization suggested causal effects on liability to PAU of substance use, psychiatric status, risk-taking behavior and cognitive performance. In summary, this large PAU meta-analysis identified novel risk loci and revealed genetic relationships with numerous other traits.


Asunto(s)
Alcoholismo/genética , Predisposición Genética a la Enfermedad , Consumo de Bebidas Alcohólicas/genética , Conjuntos de Datos como Asunto , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Herencia Multifactorial
17.
Transl Psychiatry ; 10(1): 163, 2020 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-32448866

RESUMEN

Depression is a common and clinically heterogeneous mental health disorder that is frequently comorbid with other diseases and conditions. Stratification of depression may align sub-diagnoses more closely with their underling aetiology and provide more tractable targets for research and effective treatment. In the current study, we investigated whether genetic data could be used to identify subgroups within people with depression using the UK Biobank. Examination of cross-locus correlations were used to test for evidence of subgroups using genetic data from seven other complex traits and disorders that were genetically correlated with depression and had sufficient power (>0.6) for detection. We found no evidence for subgroups within depression for schizophrenia, bipolar disorder, attention deficit/hyperactivity disorder, autism spectrum disorder, anorexia nervosa, inflammatory bowel disease or obesity. This suggests that for these traits, genetic correlations with depression were driven by pleiotropic genetic variants carried by everyone rather than by a specific subgroup.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Trastorno Bipolar , Bancos de Muestras Biológicas , Depresión/genética , Humanos , Reino Unido
18.
Nat Genet ; 52(4): 437-447, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32231276

RESUMEN

Minimal phenotyping refers to the reliance on the use of a small number of self-reported items for disease case identification, increasingly used in genome-wide association studies (GWAS). Here we report differences in genetic architecture between depression defined by minimal phenotyping and strictly defined major depressive disorder (MDD): the former has a lower genotype-derived heritability that cannot be explained by inclusion of milder cases and a higher proportion of the genome contributing to this shared genetic liability with other conditions than for strictly defined MDD. GWAS based on minimal phenotyping definitions preferentially identifies loci that are not specific to MDD, and, although it generates highly predictive polygenic risk scores, the predictive power can be explained entirely by large sample sizes rather than by specificity for MDD. Our results show that reliance on results from minimal phenotyping may bias views of the genetic architecture of MDD and impede the ability to identify pathways specific to MDD.


Asunto(s)
Trastorno Depresivo Mayor/genética , Predisposición Genética a la Enfermedad/genética , Adulto , Anciano , Trastorno Bipolar/genética , Femenino , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Herencia Multifactorial/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo , Sensibilidad y Especificidad
19.
Eur Psychiatry ; 63(1): e28, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-32189608

RESUMEN

BACKGROUND: Cognitive impairment associated with lifetime major depressive disorder (MDD) is well-supported by meta-analytic studies, but population-based estimates remain scarce. Previous UK Biobank studies have only shown limited evidence of cognitive differences related to probable MDD. Using updated cognitive and clinical assessments in UK Biobank, this study investigated population-level differences in cognitive functioning associated with lifetime MDD. METHODS: Associations between lifetime MDD and cognition (performance on six tasks and general cognitive functioning [g-factor]) were investigated in UK Biobank (N-range 7,457-14,836, age 45-81 years, 52% female), adjusting for demographics, education, and lifestyle. Lifetime MDD classifications were based on the Composite International Diagnostic Interview. Within the lifetime MDD group, we additionally investigated relationships between cognition and (a) recurrence, (b) current symptoms, (c) severity of psychosocial impairment (while symptomatic), and (d) concurrent psychotropic medication use. RESULTS: Lifetime MDD was robustly associated with a lower g-factor (ß = -0.10, PFDR = 4.7 × 10-5), with impairments in attention, processing speed, and executive functioning (ß ≥ 0.06). Clinical characteristics revealed differential profiles of cognitive impairment among case individuals; those who reported severe psychosocial impairment and use of psychotropic medication performed worse on cognitive tests. Severe psychosocial impairment and reasoning showed the strongest association (ß = -0.18, PFDR = 7.5 × 10-5). CONCLUSIONS: Findings describe small but robust associations between lifetime MDD and lower cognitive performance within a population-based sample. Overall effects were of modest effect size, suggesting limited clinical relevance. However, deficits within specific cognitive domains were more pronounced in relation to clinical characteristics, particularly severe psychosocial impairment.


Asunto(s)
Cognición , Disfunción Cognitiva/complicaciones , Trastorno Depresivo Mayor/complicaciones , Actividades Cotidianas/psicología , Anciano , Anciano de 80 o más Años , Bancos de Muestras Biológicas , Disfunción Cognitiva/psicología , Estudios Transversales , Trastorno Depresivo Mayor/psicología , Función Ejecutiva , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reino Unido
20.
Transl Psychiatry ; 10(1): 55, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32066731

RESUMEN

Expression quantitative trait loci (eQTL) are genetic variants associated with gene expression. Using genome-wide genotype data, it is now possible to impute gene expression using eQTL mapping efforts. This approach can be used to analyse previously unexplored relationships between gene expression and heritable in vivo measures of human brain structural connectivity. Using large-scale eQTL mapping studies, we computed 6457 gene expression scores (eQTL scores) using genome-wide genotype data in UK Biobank, where each score represents a genetic proxy measure of gene expression. These scores were then tested for associations with two diffusion tensor imaging measures, fractional anisotropy (NFA = 14,518) and mean diffusivity (NMD = 14,485), representing white matter structural integrity. We found FDR-corrected significant associations between 8 eQTL scores and structural connectivity phenotypes, including global and regional measures (ßabsolute FA = 0.0339-0.0453; MD = 0.0308-0.0381) and individual tracts (ßabsolute FA = 0.0320-0.0561; MD = 0.0295-0.0480). The loci within these eQTL scores have been reported to regulate expression of genes involved in various brain-related processes and disorders, such as neurite outgrowth and Parkinson's disease (DCAKD, SLC35A4, SEC14L4, SRA1, NMT1, CPNE1, PLEKHM1, UBE3C). Our findings indicate that eQTL scores are associated with measures of in vivo brain connectivity and provide novel information not previously found by conventional genome-wide association studies. Although the role of expression of these genes regarding white matter microstructural integrity is not yet clear, these results suggest it may be possible, in future, to map potential trait- and disease-associated eQTL to in vivo brain connectivity and better understand the mechanisms of psychiatric disorders and brain traits, and their associated imaging findings.


Asunto(s)
Sustancia Blanca , Bancos de Muestras Biológicas , Imagen de Difusión Tensora , Estudio de Asociación del Genoma Completo , Humanos , Neuroimagen , Sitios de Carácter Cuantitativo , Reino Unido , Sustancia Blanca/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...